The energy landscape for ubihydroquinone oxidation at the Q(o) site of the bc(1) complex in Rhodobacter sphaeroides.
نویسندگان
چکیده
Activation energies for partial reactions involved in oxidation of quinol by the bc(1) complex were independent of pH in the range 5. 5-8.9. Formation of enzyme-substrate complex required two substrates, ubihydroquinone binding from the lipid phase and the extrinsic domain of the iron-sulfur protein. The activation energy for ubihydroquinone oxidation was independent of the concentration of either substrate, showing that the activated step was in a reaction after formation of the enzyme-substrate complex. At all pH values, the partial reaction with the limiting rate and the highest activation energy was oxidation of bound ubihydroquinone. The pH dependence of the rate of ubihydroquinone oxidation reflected the pK on the oxidized iron-sulfur protein and requirement for the deprotonated form in formation of the enzyme-substrate complex. We discuss different mechanisms to explain the properties of the bifurcated reaction, and we preclude models in which the high activation barrier is in the second electron transfer or is caused by deprotonation of QH(2). Separation to products after the first electron transfer and movement of semiquinone formed in the Q(o) site would allow rapid electron transfer to heme b(L). This would also insulate the semiquinone from oxidation by the iron-sulfur protein, explaining the efficiency of bifurcation.
منابع مشابه
Effect of inhibitors on the ubiquinone binding capacity of the primary energy conversion site in the Rhodobacter capsulatus cytochrome bc(1) complex.
A key issue concerning the primary conversion (Q(O)) site function in the cytochrome bc(1) complex is the stoichiometry of ubiquinone/ubihydroquinone occupancy. Previous evidence suggests that the Q(O) site is able to accommodate two ubiquinone molecules, the double occupancy model [Ding, H., Robertson, D. E., Daldal, F., and Dutton, P. L. (1992) Biochemistry 31, 3144-3158]. In the recently rep...
متن کاملFast oxidation of the primary electron acceptor under anaerobic conditions requires the organization of the photosynthetic chain of Rhodobacter sphaeroides in supercomplexes.
The kinetics of reoxidation of the primary acceptor Q(a) has been followed by measuring the changes in the fluorescence yield induced by a series of saturating flashes in intact cells of Rhodobacter sphaeroides in anaerobic conditions. At 0 degrees C, about half of Q(a)(-) is reoxidized in about 200 ms while reoxidation of the remaining fraction is completed in several seconds to minutes. The f...
متن کاملPathways for proton release during ubihydroquinone oxidation by the bc(1) complex.
Quinol oxidation by the bc(1) complex of Rhodobacter sphaeroides occurs from an enzyme-substrate complex formed between quinol bound at the Q(o) site and the iron-sulfur protein (ISP) docked at an interface on cytochrome b. From the structure of the stigmatellin-containing mitochondrial complex, we suggest that hydrogen bonds to the two quinol hydroxyl groups, from Glu-272 of cytochrome b and H...
متن کاملProton-coupled electron transfer at the Qo-site of the bc1 complex controls the rate of ubihydroquinone oxidation.
The rate-limiting reaction of the bc(1) complex from Rhodobacter sphaeroides is transfer of the first electron from ubihydroquinone (quinol, QH(2)) to the [2Fe-2S] cluster of the Rieske iron-sulfur protein (ISP) at the Q(o)-site. Formation of the ES-complex requires participation of two substrates (S), QH(2) and ISP(ox). From the variation of rate with [S], the binding constants for both substr...
متن کاملThe cytochrome bc1 complex of Rhodobacter capsulatus: ubiquinol oxidation in a dimeric Q-cycle?
We studied the cytochrome bc1 complex (hereafter bc) by flash excitation of Rhodobacter capsulatis chromatophores. The reduction of the high-potential heme b(h), of cytochrome b (at 561 nm) and of cytochromes c (at 552 nm) and the electrochromic absorption transients (at 524 nm) were monitored after the first and second flashes of light, respectively. We kept the ubiquinone pool oxidized in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 48 شماره
صفحات -
تاریخ انتشار 1999